Avaliação do estadiamento do transtorno de estresse pós-traumático : um estudo com aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Lima, Luís Francisco Ramos
Orientador(a): Freitas, Lucia Helena Machado
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/220404
Resumo: Os transtornos de estresse relacionados a um evento traumático, como o transtorno de estresse agudo (TEA) e o transtorno de estresse pós-traumático (TEPT), são caracterizados por alta morbidade e prejuízo social significativo. No Brasil, estima-se que 80% da população já foi exposta a pelo menos um evento traumático ao longo da vida em grandes centros urbanos, como São Paulo e Rio de Janeiro; o crescente problema da violência urbana mostra-se fator importante para a gênese dos transtornos relacionados ao trauma. Devido à etiologia do TEPT ser multicausal e complexa, técnicas de Machine Learning (Aprendizado de Máquina – ML) tem sido usadas para desenvolver escores de risco, para predição diagnóstica e para definição de tratamento. Contudo, considerando sua heterogeneidade clínica e etiológica, realizar o diagnóstico e definir um tratamento adequado pode ser muitas vezes desafiador. O uso do estadiamento clínico surge como um método mais refinado de diagnóstico, procurando definir a progressão do transtorno em momentos específicos durante o continuum da enfermidade. Esta abordagem pode auxiliar em um diagnóstico mais aprimorado, conhecer melhor o prognóstico e escolher o melhor tratamento de acordo com o estágio do transtorno. Assim, o TEPT aparece como um exemplo importante de como um método de estadiamento pode trazer benefícios. O objetivo desta tese é avaliar como os aspectos pessoais, clínicos e relacionados ao trauma dos pacientes atendidos em ambulatórios especializados em trauma psíquico podem estar relacionados à predição do estadiamento clínico de TEPT usando técnicas de ML.