Aquisição, processamento de sinais mioelétricos e máquina de vetores de suporte para caracterização de movimentos do segmento mão-braço

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Nilson, Clairê de Pauli
Orientador(a): Balbinot, Alexandre
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/101175
Resumo: As diversas áreas da Engenharia, em parceria com a ciência médica, têm contribuído de forma eficaz para o avanço do conhecimento e dos resultados em aplicações práticas na vida do deficiente físico. De forma geral, pesquisas com este foco têm permitido o desenvolvimento de dispositivos e recursos com o objetivo de oferecer novamente a mobilidade e a liberdade perdidas com a deficiência. Este trabalho tem a finalidade de desenvolver um sistema que utiliza Eletromiografia de Superfície e Máquina de Vetores de Suporte para a caracterização de determinados movimentos de um braço humano, possibilitando, futuramente, a integração em sistemas de reabilitação. Primeiramente os sinais mioelétricos são obtidos nos músculos do braço de voluntários através de eletrodos de superfície ligados a um eletromiógrafo. O sinal é adquirido, utilizando como padrão um modelo virtual que demonstra ao voluntário os movimentos do segmento mão-braço que devem ser imitados. Esses movimentos são executados e seus sinais mioelétricos adquiridos. Posteriormente, esses sinais são processados e características são extraídas. Em seguida, são alocadas algumas de suas características (RMS, média, variância, desvio padrão, skewness e kurtosis) na entrada da Máquina de Vetores de Suporte, que apresenta, como saída, o reconhecimento, ou não, do movimento previamente executado pelo voluntário. No final do processo, observou-se que aumentando o número de canais elevou-se a taxa de acerto dos movimentos e, com a retirada de determinada característica, houve decréscimo na taxa de acerto do sistema. Nestes casos, os 9 movimentos distintos atingiram uma taxa de acerto média de 83,2%, para dois canais, e 91,3%, para oito canais, e, em ambos sistemas de canais, com as seis características.