Aplicação de máquinas de vetor de suporte e modelos auto-regressivos de média móvel na classificação de sinais eletromiográficos.

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Barretto, Mateus Ymanaka
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-28032017-100828/
Resumo: O diagnóstico de doenças neuromusculares é feito pelo uso conjunto de várias ferramentas. Dentre elas, o exame de eletromiografia clínica fornece informações vitais ao diagnóstico. A aplicação de alguns classificadores (discriminante linear e redes neurais artificiais) aos diversos parâmetros dos sinais de eletromiografia (número de fases, de reversões e de cruzamentos de zero, freqüência mediana, coeficientes auto-regressivos) tem fornecido resultados promissores na literatura. No entanto, a necessidade de um número grande de coeficientes auto-regressivos direcionou este mestrado ao uso de modelos auto-regressivos de média móvel com um número menor de coeficientes. A classificação (em normal, neuropático ou miopático) foi feita pela máquina de vetor de suporte, um tipo de rede neural artificial de uso recente. O objetivo deste trabalho foi o de estudar a viabilidade do uso de modelos auto-regressivos de média móvel (ARMA) de ordem baixa, em vez de auto-regressivos de ordem alta, em conjunção com a máquina de vetor de suporte, para auxílio ao diagnóstico. Os resultados indicam que a máquina de vetor de suporte tem desempenho melhor que o discriminante linear de Fisher e que os modelos ARMA(1,11) e ARMA(1,12) fornecem altas taxas de classificação (81,5%), cujos valores são próximos ao máximo obtido com modelos auto-regressivos de ordem 39. Portanto, recomenda-se o uso da máquina de vetor de suporte e de modelos ARMA (1,11) ou ARMA(1,12) para a classificação de sinais de eletromiografia de agulha, de 800ms de duração e amostrados a 25kHz.