Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Cene, Vinicius Horn |
Orientador(a): |
Balbinot, Alexandre |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/140519
|
Resumo: |
Através dos dispositivos e técnicas desenvolvidas na área da Instrumentação Biomédica é possível oferecer um tratamento ou de forma geral soluções que permitam uma vivência mais plena em sociedade para pessoas que possuem algum tipo de deficiência ou doença. Com o aumento da capacidade computacional nos últimos anos foi possível desenvolver muitas técnicas e dispositivos apoiados em processamento digital de sinais e há um grande interesse pelo desenvolvimento de interfaces mais naturais, como sinais biológicos para o controle de próteses e dispositivos. Este trabalho tem por objetivo apresentar o desenvolvimento de um método de Inteligência Computacional baseado em Regressão Logística capaz de classificar 17 movimentos do segmento mão-braço realizados pelos voluntários do estudo através do processamento do sinal mioelétrico (SME) adquiridos dos sujeitos em questão. Adicionalmente é realizada uma avaliação da influência de alguns dos canais, características do sinal e movimentos executados na taxa de acerto global. Para a realização do sistema foi utilizado um aparato experimental capaz de adquirir os SME através de 12 canais utilizando eletrodos não invasivos e posteriormente digitalizá-los. Logo após efetua-se a extração das três características utilizadas no trabalho, que servem de entrada para o método de Regressão Logística. Para este estudo foram processados três bancos de dados que perfazem um total de 50 voluntários. A taxa média de acerto alcançada foi de 70,1%, considerando todas as variações de testes realizados enquanto a média para os melhores casos de cada variação de entrada realizada foi de 92,5%. |