Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Oliveira, Luiz Otávio Vilas Bôas |
Orientador(a): |
Barone, Dante Augusto Couto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/56853
|
Resumo: |
O sistema imunológico dos vertebrados é extremamente complexo, sendo responsável por proteger o organismo contra agentes causadores de doenças. Para funcionar apropriadamente, é necessário que seus componentes reconheçam de forma eficaz os elementos patógenos, a fim de neutralizá-los, e também os elementos do próprio organismo, de forma a não reagirem a estes. Estas e outras características são similares àquelas exigidas em soluções para problemas de engenharia e computação. Desta forma, os sistemas imunológicos artificiais utilizam a contraparte biológica como metáfora para o desenvolvimento de diversas ferramentas computacionais utilizadas nas mais diversas tarefas. Esta dissertação utiliza os conceitos apresentados pelos sistemas imunológicos artificiais para o desenvolvimento de um novo algoritmo de aprendizado supervisionado, baseado principalmente no mecanismo de seleção clonal. O método proposto neste trabalho, denominado clonal selection classifier with data reduction (CSCDR), utiliza uma função de aptidão com base no número de classificações corretas e incorretas apresentadas por cada anticorpo. O algoritmo tenta maximizar este valor através do processo de seleção clonal, envolvendo mutação, maturação de afinidade e seleção dos melhores indivíduos, transformando a fase de treinamento em um problema de otimização. Isto leva a anticorpos com maior representatividade e, portanto, diminui a quantidade de protótipos gerados ao final do algoritmo. Experimentos em bases de dados sintéticas e bases de dados de problemas reais, utilizadas como benchmark para problemas de aprendizagem de máquina, demonstram a eficácia do algoritmo CSCDR como técnica de classificação. Quando comparado a outros classificadores conhecidos da literatura, o CSCDR apresenta desempenho similar e, quando comparado a algoritmos baseados em instâncias, o mesmo utiliza menores quantidades de protótipos para representar os dados, mantendo o desempenho. |