Diagnóstico de falhas em estruturas isotrópicas utilizando sistemas imunológicos artificiais com seleção negativa e clonal

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Oliveira, Daniela Cabral de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/182151
Resumo: Este trabalho é dedicado ao desenvolvimento de uma metodologia baseada no monitoramento da integridade estrutural em aeronaves com foco em técnicas de computação inteligente, tendo como intuito detectar, localizar e quantificar falhas estruturais utilizando os sistemas imunológicos artificiais (SIA). Este conceito permite compor o sistema de diagnóstico apto a aprender continuamente, contemplando distintas situações de danos, sem a necessidade de reiniciar o processo de aprendizado. Neste cenário, foi empregado dois algoritmos imunológicos artificiais, sendo o algoritmo de seleção negativa, responsável pelo processo de reconhecimento de padrões, e o algoritmo de seleção clonal responsável pelo processo de aprendizado continuado. Também foi possível quantificar o grau de influência do dano para as cinco situações de danos. Para avaliar a metodologia foi montada uma bancada experimental com transdutores piezelétricos que funcionam como sensor e atuador em configurações experimentais, que podem ser anexadas à estrutura para produzir ou coletar ondas numa placa de alumínio (representando a asa do avião), sendo coletados sinais na situação normal e em cinco situações distintas de danos. Os resultados demonstraram robustez e precisão da nova metodologia proposta.