Algoritmo de seleção clonal para a minimização de rearranjos em operações de pilhas de contêineres

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Carraro, Luiz Antonio lattes
Orientador(a): Silva, Leandro Nunes de Castro lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://dspace.mackenzie.br/handle/10899/24339
Resumo: A utilização de contêineres é uma solução amplamente adotada para o armazenamento da carga a ser transportada entre portos, tornando-se de grande importância no comércio internacional e, consequentemente, navios cresceram de tamanho com o objetivo de transportar a maior quantidade possível de contêineres em cada viagem. Devido à crescente demanda, terminais de contêineres enfrentam os desafios de aumentar a sua capacidade de atendimento e otimizar os tempos de carregamento e descarregamento de navios. Problemas de otimização como estes geralmente apresentam características que inviabilizam a obtenção de soluções analíticas fechadas, requerendo processos iterativos de busca em espaços de dimensão muitas vezes elevada, ou ainda sujeitos a explosão combinatória de possíveis soluções. Esta dissertação apresenta a proposta de uma meta-heurística bioinspirada baseada no Algoritmo de Seleção Clonal para a minimização de rearranjos em operações que envolvem pilhas de contêineres, denominado MRC. O desempenho do algoritmo foi avaliado por meio de simulações e comparação dos resultados com os obtidos por algoritmos da literatura sob as mesmas condições de teste. Os resultados obtidos permitem concluir que o MRC possui resultados competitivos em termos de minimização de rearranjos, além de apresentar um tempo de processamento reduzido quando comparado aos modelos tradicionalmente empregados na solução desse tipo de problema.