Comparação de diferentes campos de força na descrição conformacional de siRNAs

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Arantes, Pablo Ricardo
Orientador(a): Verli, Hugo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/150635
Resumo: siRNAs são pequenos RNAs de interferência de cadeia dupla que podem silenciar a expressão de genes específicos pós-transcricionalmente. A despeito de suas importantes funções biológicas, poucos estudos vêm se dedicando a abordá-los sob a perspectiva atomística. Com relação às técnicas computacionais, existem ainda poucas informações sobre a confiabilidade das predições in silico realizadas com estas pequenas moléculas de RNA de fitadupla. Neste contexto, o presente trabalho compara os campos de força AMBER, CHARMM e GROMOS na descrição conformacional de siRNAs livres e complexados a proteína p19, através de simulações por dinâmica molecular. Destes, AMBER e CHARMM mantiveram a conformação molecular dos siRNAs similar à geometria cristalográfica, enquanto o GROMOS introduziu uma série de distorções, conforme descrito previamente para a molécula de DNA (RICCI ET AL., 2010). De forma geral, a complexação à p19 promoveu um aumento na rigidez dos siRNAs. Em contrapartida, os problemas apresentados pelo GROMOS foram extensos, incluindo abertura da dupla-hélice e perda do pareamento, possivelmente através de problemas nos ângulos torcionais descritores do esqueleto conformacional dos siRNAs. Assim, os dados obtidos apontam para AMBER e CHARMM como os principais campos de força para simulações de pequenos RNAs. Por outro lado, observamos potenciais pontos de partida para melhoria do GROMOS na descrição de ácidos nucleicos, o que permitiria simulações cobrindo escalas de tempo maiores em máquinas de custos menores.