Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Stumpf, Felipe Tempel |
Orientador(a): |
Marczak, Rogerio Jose |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/75757
|
Resumo: |
Em problemas de viscoelasticidade computacional, a discretização espacial para a solução global das equações de equilíbrio é acoplada à discretização temporal para a solução de um problema de valor inicial local do fluxo viscoelástico. É demonstrado que este acoplamento espacial-temporal (ou global-local) éconsistente se o tensor de deformação total, agindo como elemento acoplador, tem uma aproximação de ordem p ao longo do tempo igual à ordem de convergência do método de integração de Runge-Kutta (RK). Para a interpolação da deformação foram utilizados polinômios baseados em soluções obtidas nos tempos tn+1, tn, . . ., tn+2−p, p ≥ 2, fornecendo dados consistentes de deformação nos estágios do RK. Em uma situação onde tal regra para a interpolação da deformação não é satisfeita, a integração no tempo apresentará, consequentemente, redução de ordem, baixa precisão e, por conseguinte, eficiência inferior. Em termos gerais, o propósito é generalizar esta condição de consistência proposta pela literatura, formalizando-a matematicamente e o demonstrando através da utilização de métodos de Runge-Kutta diagonalmente implícitos (DIRK) até ordem p = 4, aplicados a modelos viscoelásticos não-lineares sujeitos a deformações finitas. Através de exemplos numéricos, os algoritmos de integração temporal adaptados apresentaram ordem de convergência nominal e, portanto, comprovam a validade da formalização do conceito de interpolação consistente da deformação. Comparado com o método de integração de Euler implícito, é demonstrado que os métodos DIRK aqui aplicados apresentam um ganho considerável em eficiência, comprovado através dos fatores de aceleração atingidos. |