Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Ament, Gabriel Fonseca |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/59/59143/tde-31102022-100226/
|
Resumo: |
Os métodos de Runge-Kutta (RK) são técnicas bastante conhecidas e amplamente utilizadas para resolver numericamente problemas de valor inicial (PVIs) de equações diferenciais ordinárias. Derivado do RK, o método Runge-Kutta Contínuo (RKC) acrescenta ao anterior uma técnica de interpolação polinomial e produz uma função contínua para aproximar a solução do PVI. Dessa forma, o método RKC pode ser naturalmente estendido para as equações diferenciais com retardo (EDRs), que têm como característica a necessidade da avaliação da solução em momentos anteriores ao atual e que, em geral, não coincidem com um ponto da malha. O método RKC simplifica o processo de obtenção da solução numérica enquanto preserva a precisão e demais qualidades dos métodos de RK. Do ponto de vista das aplicações, as EDRs modelam fenômenos das mais diversas áreas do conhecimento, desde as ciências básicas como Biologia, Física e Química, quanto fenômenos econômicos e sociais. Na área de dinâmica populacional, destacam-se, por exemplo, variações dos modelos clássicos de crescimento malthusiano e logístico e os modelos epidêmicos compartimentais, como o modelo SIR (suscetível-infeccioso-recuperado). Nesse contexto, apresentamos nesse trabalho um estudo do método RKC para solução numérica de EDRs, seus aspectos teóricos, sua implementação computacional e aplicações em exemplos tanto puramente matemáticos quanto relacionados a modelos de dinâmica populacional. O código, desenvolvido em linguagem MATLAB, contempla uma ampla gama de problemas, incluindo as EDRs com retardo constante, dependente do tempo e dependente do estado, bem como sistemas de EDRs. Os resultados mostram que as soluções numéricas obtidas são bastante precisas o que torna o programa desenvolvido promissor para ser aplicado em problemas reais das ciências e engenharias. |