Propriedades espectrais de um grafo

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Fritscher, Eliseu
Orientador(a): Trevisan, Vilmar
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/29237
Resumo: Associadas a um grafo G, temos a matriz de adjacência A(G) e a matriz laplaciana L(G). Este trabalho descreve algumas propriedades dessas matrizes e de seus autovalores em relação a características estruturais do grafo. Veremos que, em geral, somente o espectro de G, isto é, conjunto de autovalores de A(G), não é capaz de revelar todas as informações a respeito do grafo. Apresentaremos também uma nova cota superior para a soma dos k maiores autovalores laplacianos de uma árvore com n vértices, para k {1, . . . , ng}. Esse limite nos permitirá demonstrar que, dentre todas as árvores de n vértices, a árvore com energia laplaciana máxima é a estrela Sn, o que foi conjecturado por Radenkovi¢ e Gutman [18].