Fundamentos matemáticos de estratégias espectrais para particionamento de grafos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Varella, Guilherme Tadewald
Orientador(a): Hoppen, Carlos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/254875
Resumo: O problema de particionamento consiste, basicamente, em agrupar dados semelhantes e separar aqueles que não se assemelham e pode ser modelado matematicamente a partir de grafos. Recentemente, foram publicados diversos resultados teóricos sobre o tema e alguns deles fornecem algoritmos que utilizam o espectro de uma matriz associada a um grafo para gerar uma partição que auxilia a demonstrar estes resultados. Tais resultados trazem argumentos teóricos que podem ser evidências de que este algoritmo teria um bom desempenho como método para encontrar a melhor partição do problema de particionamento. Neste trabalho, procuramos entender o funcionamento de alguns destes algoritmos. Especificamente, nosso objetivo é compreender os algoritmos obtidos pela demonstração da cota superior para condutâncias de ordem 2, apresentada por Chung [8], e ordem k > 2, demonstrada por Trevisan [33]. Com relação a este último, apesar da demonstração não exigir que alguns passos do algoritmo sejam implementados de uma única maneira, vamos especificá-los com base na análise dos exemplos em que o aplicamos. Nestes exemplos, observamos que os algoritmos definidos obtiveram um bom desempenho. Também estudamos o resultado apresentado por Wang et. al [35] sobre particionamento de árvores em duas classes e propomos uma possível estratégia para provar a versão estendida deste resultado para k > 2 classes. Parte desta estratégia envolve uma versão do resultado [35] estendido para grafos com peso nos vértices, cuja prova é uma contribuição original deste trabalho.