Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Lucchese, Luisa Vieira |
Orientador(a): |
Pedrollo, Olavo Correa |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/249991
|
Resumo: |
O Brasil é o país na América Latina com maior número de deslizamentos fatais provocados por precipitação. Neste trabalho, modela-se a suscetibilidade e os limiares de precipitação antecedente espacializados para ocorrência de deslizamentos de terra, a partir do desenvolvimento e aplicação de modelos baseados em Redes Neurais Artificiais (RNA). A modelagem é feita no âmbito da unidade geomorfológica da Serra Geral, com base em seis eventos passados cujas cicatrizes foram mapeadas com base em imagens de sensoriamento remoto. Os atributos do terreno utilizados como variáveis de entrada dos modelos foram obtidos a partir de um Modelo Digital de Elevação (MDE). O uso dos atributos reprojetados sobre os oito primeiros Componentes Principais acelerou o treinamento das RNAs, mas diminuiu a performance dos modelos. A pesquisa de métodos para a escolha dos locais para a extração das amostras de não-ocorrência proporcionou orientação importante para a composição da amostragem de treinamento dos modelos. O mapeamento da suscetibilidade também foi executado utilizando outros dois métodos de Aprendizagem de Máquina, Sistemas de Inferência Difusos (Fuzzy) (FIS) e Florestas Aleatórias, com bons resultados. Por fim, foram modelados conjuntamente a suscetibilidade a deslizamentos e os limiares de precipitação para a região de estudo, utilizando RNAs de múltiplas saídas treinadas com validação cruzada espacial, com resultados satisfatórios (AUC = 0,90, MEA = 32,77 mm, representando 25,99%). A transferibilidade do modelo de suscetibilidade foi analisada em uma bacia na mesma formação cujos dados não foram utilizados na modelagem, apresentando um AUC de 0,96. |