Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Carvalho, Leopoldo Bulgarelli de
 |
Orientador(a): |
Oliveira, Pedro Paulo Balbi de
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.mackenzie.br/handle/10899/24389
|
Resumo: |
Aplicações recentes em programação evolutiva tem sugerido a utilização de diferentes distribuições estáveis de probabilidade, tais como de Cauchy e de Lévy, no processo aleatório associado às mutações, como alternativa à tradicional (e também estável) distribuição Normal. A motivação para tanto é melhorar os resultados em algumas classes de problemas de otimização, com relação aos obtidos através da distribuição Normal. Esse trabalho propõe uma nova classe de algoritmos auto-adaptativos com respeito à determinação dos parâmetros da distribuição estável mais adequada para cada problema de otimização. Tais algoritmos foram derivados de um existente na literatura, especialmente sua versão apresentada em [Lee e Yao, 2004]. Em um primeiro momento foram estudadas as principais características das distribuições estáveis que são, nesse trabalho, o foco dos processos aleatórios associados às mutações. Posteriormente, foram apresentadas as diferentes abordagens descritas pela literatura e as sugestões de algoritmos com características auto-adaptativas. As avaliações dos algoritmos propostos utilizaram funções de teste padrão da literatura, e os resultados comparativos de desempenho foram realizados com relação a um algoritmo tradicional baseado na distribuição Normal. Posteriormente, foram aplicados novos comparativos entre as diversas abordagens auto-adaptativas definidas no presente estudo, e feito um comparativo do melhor algoritmo auto-adaptativo aqui proposto com o melhor algoritmo adaptativo obtido de [Lee e Yao, 2004]. Os resultados evidenciaram superioridade numérica e estatística da abordagem baseada em distribuições estáveis, sobre o método tradicional baseado na distribuição Normal. No entanto, o método proposto não se mostrou mais eficaz que o método adaptativo sugerido em [Lee e Yao, 2004], o que pode ter sido decorrente de decisões de implementação não explícitas naquele trabalho, que tiveram de ser tomadas no presente contexto. |