Modelos GAS com distribuições estáveis para séries temporais financeiras

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Gomes, Daniel Takata
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-11012018-171109/
Resumo: Modelos GARCH tendo a normal e a t-Student como distribuições condicionais são amplamente utilizados para modelagem da volatilidade de dados financeiros. No entanto, tais distribuições podem não ser apropriadas para algumas séries com caudas pesadas e comportamento leptocúrtico. As chamadas distribuições estáveis podem ser mais adequadas para sua modelagem, como já explorado na literatura. Por outro lado, os modelos GAS (Generalized Autoregressive Score), com desenvolvimento recente, tratam-se de modelos dinâmicos que possuem em sua estrutura a função score (derivada do logaritmo da verossimilhança). Tal abordagem oferece uma direção natural para a evolução dos parâmetros da distribuição dos dados. Neste trabalho, é proposto um novo modelo GAS em conjunção com distribuições estáveis simétricas para a modelagem da volatilidade - de fato, é uma generalização do GARCH, pois, para uma particular escolha de distribuição estável e de estrutura do modelo, tem-se o clássico modelo GARCH gaussiano. Como em geral a função densidade das distribuições estáveis não possui forma analítica fechada, é apresentado seu procedimento de cálculo, bem como de suas derivadas, para o completo desenvolvimento do método de estimação dos parâmetros. Também são analisadas as condições de estacionariedade e a estrutura de dependência do modelo. Estudos de simulação são conduzidos, bem como uma aplicação a dados reais, para comparação entre modelos usuais, que utilizam distribuições normal e t-Student, e o modelo proposto, demonstrando a eficácia deste.