Detalhes bibliográficos
Ano de defesa: |
2006 |
Autor(a) principal: |
Carnevarollo Júnior, Rubens Pazim [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/99832
|
Resumo: |
O objetivo principal desse trabalho é provar, sob certas hipóteses de transversalidade e sobre os autovalores, que se uma família a um-parâmetro de equações diferenciais possuindo, para um determinado valor do parâmetro, um laço homoclínico conectado a um ponto de equilíbrio do tipo sela, então existe uma variedade central invariante, de dimensão dois, que contém o laçco homoclínico, que contém todas as trajetórias que permanecem numa vizinhança do laço homoclínico e ainda é tangente ao autoespaço gerado por autovetores associados aos autovalores que determinam o laço homoclínico. |