Predição do sequestro do carbono em área reflorestada utilizando redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Nunes, Clodoaldo [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/100356
Resumo: O aumento das emissões e concentrações de gás carbônico na atmosfera tem ocasionado a intensificação do efeito estufa e, consequentemente, das alterações climáticas e desequilíbrio sobre o planeta. Deste modo, torna-se imprescindível a adoção de medidas e o desenvolvimento de métodos eficientes para quantificar e avaliar a emissão do fluxo de gás carbono na atmosfera pela vegetação terrestre. Assim sendo, esta pesquisa tem por objetivo propor o desenvolvimento de um sistema inteligente, baseado no emprego de redes neurais, para predizer , seja a curto, médio ou de longo prazo, o sequestro (absorção) de carbono em áreas de reflorestamento, em uma fazenda situada na Amazônia Mato-Grossense com 10 mil hectares. O sistema proposto foi desenvolvido utilizando uma composição formada por uma rede neural da família ART (Adaptive Resonance Theory), a ART-Fuzzy e uma rede neural feedforward multicamadas com treinamento realizado via uso do algoritmo retropropagação, quantificando e realizando a previsão com maior acurácia e precisão da absorção de carbono, colaborando, desta forma, para que se adotem medidas para minimizar os impactos futuros do aumento da temperatura global e garantir a sustentabilidade do planeta. Ressalta-se que esta proposta é inovadora, pois pode-se abordar de áreas com diversidade de árvores, de grande extensões plantadas, entre outros fatores importantes neste contexto. Ou seja, trata-se de um sistema inteligente robusto e de grande flexibilidade de aplicação.