Condições de otimalidade para problemas de controle ótimo minimax

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Aquino, Paola Geovanna Patzi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/181611
Resumo: Neste trabalho consideramos problemas de controle minimax em que as funções envolvidas dependem de parâmetros desconhecidos. Essa dependências aparece tanto na dinâmica, quanto na função custo, e minimizamos com respeito aos controles a maximização da função de custo em relação aos parâmetros. O trabalho é dividido em duas partes principais. Na primeira fornecemos condições necessárias e suficientes de otimalidade para problemas de controle minimax sem restrições, usando a teoria de Programação Dinâmica via equações de Hamilton-Jacobi-Bellman (HJB). Caracterizamos a função de valor do problema minimax como o máximo de funções de valor de problemas parametrizados sobre o conjunto de parâmetros e mostramos que a função de valor é solução da equação HJB. Na segunda parte, consideramos problemas de controle ótimo minimax com restrições de igualdade e desigualdade, para o qual proporcionamos condições necessárias de otimalidade no sentido do Princípio do Máximo (de Pontryagin).