Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Chaim, Lucas Perroni |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/182557
|
Resumo: |
Redes Neurais Artificiais (RNAs) são algoritmos de aprendizado, geralmente estruturados em torno de categorização de dados de entrada e/ou seu agrupamento por similaridade. Tendo em vista características desejáveis como aprendizado rápido e estabilidade frente a vetores de entrada altamente mutáveis, adotou-se uma RNA do tipo Fuzzy ARTMAP como mecanismo central de um método de monitoramento de saúde estrutural para detectar e categorizar falhas em dados experimentais provenientes de um sistema mecânico similar a um pequeno prédio de dois andares. Mais especificamente, com o objetivo de detectar alterações das frequências naturais da estrutura, fenômeno ligado à deterioração da mesma, e determinar qual(is) andar(es) está(ão) ligado(s) ao comportamento anômalo, se detectado. A acurácia da rede foi avaliada, sendo realizado um estudo da quantidade de dados necessárias para o desempenho satisfatório da rede. Observou-se desempenho satisfatório, a acurácia do método tendendo a aproximadamente 94% a partir de certas quantidades de dados. |