Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Silva, Francisco Diego Garrido da [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/139536
|
Resumo: |
Diante da constante necessidade de avanço tecnológico na agricultura para promover o aumento da produtividade e seguranças aos indivíduos envolvidos no processo, esta pesquisa apresenta o desenvolvimento de um sistema inteligente, utilizando redes neurais artificiais, aplicado ao monitoramento e análise de falhas estruturais em um trator. Simulou-se o trator por meio de um modelo numérico, representado através de equações diferenciais, o qual gera sinais conforme se alteram os parâmetros de velocidade do trator e a distância entre as saliências no solo. Para a análise, identificação e classificação dos dados simulados computacionalmente, foi utilizado uma rede neural do tipo ARTMAP-Fuzzy, que utiliza conceitos da Teoria da Ressonância Adaptativa, cujo algoritmo foi desenvolvido utilizando o programa Matlab. A principal aplicação deste sistema é inspecionar a estrutura do trator objetivando sua melhor conservação, indicando se o mesmo encontra-se em condições normais ou em caso de falha estrutural. Caso uma falha seja detectada, é possível classificar seu tipo. Os resultados evidenciados foram obtidos por meio de média simples entre as execuções do sistema, em virtude de se elevar a veracidade das informações demonstradas. Os resultados obtidos na aplicação da rede neural ao problema especificado mostraram-se ser satisfatórios. |