Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Silva, Lucas de Haro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/191474
|
Resumo: |
O modelo de Zener, também conhecido como o modelo SLS, do inglês (Standard Linear Solid), é um modelo simples que descreve o comportamento de um material viscoelástico como isolador de vibração, utilizando uma combinação linear de molas e amortecedores para representar componentes elásticos e viscosos, respectivamente. Sabe-se que, o modelo mais semelhante de Maxwell, que é uma mola em série com um amortecedor, e o modelo de Kelvin-Voigt, que é uma mola em paralelo com um amortecedor, são utilizados. No entanto, estes modelos são muitas vezes insuficientes para representar tal comportamento desejado, o modelo de Maxwell não descreve a fluência ou recuperação, e o modelo de Kelvin-Voigt não descreve o stress e o relaxamento. O SLS é o modelo mais simples, que prevê dois fenômenos, com isso em mente, esta tese propõe a investigação do modelo de amortecimento de Zener substituindo as molas simples por molas não lineares (mola Duffing), no que diz respeito ao comportamento de isolamento de vibração, mostrando as curvas de transmissibilidade para vários valores de parâmetros. São utilizados métodos analíticos aplicáveis a sistemas não lineares, bem como método numérico para realizar análises de transmissibilidade do modelo de Zener e também o desenvolvimento de um aparato experimental que representa o modelo de isolador de vibração de Zener, essencial para um entendimento substancial dos fenômenos envolvidos. O objetivo principal da tese é investigar oportunidades de melhoria de isoladores mecânicos quando projetados para atuar em faixas dinâmicas com respostas não lineares. |