Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Arlindo, Elen Poliani da Silva [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/110892
|
Resumo: |
Nowadays, considerable attention has been devoted to the development of a new class of potentially important structures, called monocrystalline nanowires based on oxides, which may become parts of electronic devices or form themselves into complete new devices with mechanical, electronic and optical properties well defined and controllable. Particularly, these nanowires may have a metal or semiconductor construction, with the doping characteristics as a controllable parameter during the growth process. In the present work, the main objective is study the mechanisms os electrical transport in tin doped indium oxide nanowires - ITO. For this, firstly the material was synthesized, and structurally and morphologically characterized. Subsequently devices for individual characterization by optical ithography were prepared and, finally, characterized suitably electrically. The synthesis resulted in nanowires of tin doped indium oxide that grow-up by the mechanism of vapor-liquid-solid growth (VLS). The characterization of individual nanowires showed that the majority of nanowires in a wide temperature range have a metallic electrical behavior, since the resistivity increases with increasing temperature. The analysis also indicated that some nanowires presented metal-insultor transition, and this transition increases with decreasing width of the nanowires. With the results obtained from the setting made with the transport models can conclude that several mechanisms are responsible for conducting the ITO nanowires, depending on the width and the carrier concentration of the same. Regarding the insulator transition models, some nanowires have Mott insulator transition metal and other metal insulator transition Anderson. The results with nanowires of different width showed that width between 155 nm and 126 nm there is a change in the dimensionality of driving from 3D to 1D |