Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Mendes, Gislânia Maria de Souza Lima |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/7872
|
Resumo: |
Magnetic semiconductors have attracted the attention of scientists in recent years due, mainly, to technological applications in the field of spintronics. These semiconductors can be developed by a process called doping, where some atoms of the semiconductor matrix are randomly replaced by magnetic atoms. This property enables the fabrication of a manifold of electronic devices from the same semiconductor material. In this work the technique of high energy mechanical milling was applied to synthesize TiO_2, SnO2 and In2O3 doped with Fe2O3. The samples were structurally characterized by x-ray diffraction and Mössbauer spectroscopy. The synthesis was performed using three types of milling tools which influenced the outcome of the reactions. Compounds with formulas Sn(1-x)Fe(x)O2, Ti(1-x)Fe(x)O2 and {In(1-x)Fe(x)2}O3 were formed, with values of magnetic dopant concentration x of 2, 5 and 10% in atoms. Samples of Fe2O3-doped TiO2 were processed using a jar of polyacetal and zirconia spheres. However, the energy produced by these tools was not sufficient to complete the formation of the compound. Samples of TiO2 doped with Fe2O3 were successfully produced using stainless steel jar and spheres. The final compound was find to be contaminated with metallic iron impurities from the tools used. Furthermore, these impurities contributed to the formation of another phase, ilmenite (FeTiO3). To achieve purity, the samples were HCl washed for removal of metallic iron, but the phase related to ilmenite was not eliminated. Moreover, samples of Fe2O3-doped TiO2, SnO2, and In2O3 were synthesized using an alumina jar and zirconia spheres. These simples showed no undesirable impurities and no formation of other phases. While compounds based on TiO2 and SnO2 maintained their original crystalline structures, the compound {In(1-x)Fe(x)2O3} underwent a change in crystal phase, from its original cubic structure to a hexagonal corundum structure type. Results obtained from X-ray diffraction and Mössbauer spectroscopy showed that with increasing milling time Fe^{3+} enters in the semiconductor matrices substituting Ti^{4+}, Sn^{4+} or In^{3+} in octahedral sites. It was also observed the formation of oxygen deficient sites in the final compounds that may be attributed to long milling times or to stoichiometric imbalance between the precursor compounds used in the milling processes. |