Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Bernardes, Haislan Ranelli Santana |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/183118
|
Resumo: |
Esta pesquisa apresenta o desenvolvimento de uma ferramenta para a detecção e classificação de curtos-circuitos em sistemas de distribuição de energia elétrica, a qual é baseada no uso combinado da análise multirresolução e rede neural ARTMAP-fuzzy. A análise multirresolução permite a identificação de singularidades nas oscilografias e a rede da família ART garante ao sistema classificador a capacidade de aprendizado contínuo de novos padrões sem perder o conhecimento previamente adquirido. Todo o processo de diagnóstico é realizado em uma única etapa, reduzindo o custo computacional da metodologia. A eficiência do sistema é verificada por uma análise direta, na qual se contabiliza a quantidade total de acertos, e por uma avaliação comparativa, a qual envolve a substituição da rede ARTMAP-fuzzy pela rede ARTMAP-Euclideana. Resultados mostram que o sistema é eficiente, sendo capaz de detectar e classificar 100% das falhas elétricas. |