Uma análise da dinâmica do pêndulo eletromecânico utilizando a teoria de pertubações

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Santos, João Paulo Martins [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/94252
Resumo: Nesta dissertação vamos fazer uma análise do sistema pêndulo eletromecânico utilizando a teoria de perturbações através dos métodos da média e múltiplas escalas. Nosso objetivo é obter soluções analáticas aproximadas para o sistema e fazer análise dos casos de ressonâncias internas, alám de estudar a estabilidade dos estados estacionários. O sistema pêndulo eletromecânico tem uma dinâmica muito rica, pois apresenta curvas características dos efeitos de histerese, fenômenos de saltos nas amplitudes dos movimentos realizáveis, curvas com características mole e dura (softening e hardening) e, além disso, diversas ressonâncias internas. Devido a complexidade das equações do sistema pêndulo eletromecânico, elas são difíceis de serem tratadas analíticamente, já que existe iteração ressonante entre as três partes (bloco, motor e pêndulo), e não podemos restringir o estudo das interações ressonantes à apenas duas partes e desprezar a outra parte. Neste trabalho analisamos o caso em que existe interação ressonante entre o bloco e o motor, mas sem interação ressonante com o pêndulo, mas, no entanto, sem desprezar os efeitos do movimento do pêndulo. Em seguida, discutimos a possibilidade de efeitos de saltos nas amplitudes dos movimentos realizáveis, apresentamos alguns pontos onde o sistema perde a estabilidade, já que a discuss~ao sobre comportamento geral do sistema érestrito a variedade central, e analisamos a estabilidade dos pontos fixos tomando como exemplo o estudo feito por Kononenko. A estabilidade dos pontos fixos do sistema é feita pela utilização do critério R-H, juntamente com a teoria da variedade central já que, no caso analisado, existe auto valor zero