Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Santos, Josimeire Maximiano dos [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/94267
|
Resumo: |
Osciladores eletromecânicos podem ser modelados matematicamente através da equação de Duffing ou equação de Van der Pol, mesmo que sejam sistemas de escala nanomética. Nesta dissertação analisamos um oscilador forçado sujeito a um amortecimento não-linear, que é representado pela equação de Duffing - Van der Pol. Em geral, não é fácil obter solução analítica exata para esta equação, então a análise é feita utilizando a teoria de perturbações para obter uma solução analítica aproximada. Para isso consideramos certos parâmetros do problema como sendo pequenos parâmetros, e obtemos a solução na forma de expansão direta. Devido o fato da frequência natural do sistema dinâmico depender do pequeno parâmetro, essa expansão é não uniforme, ou seja, apresenta termos seculares mistos (termos de Poisson), e além disso possui pequenos divisores. Essas inconveniências são eliminadas aplicando o método das múltiplas escalas e o método da média. Inicialmente os pequenos parâmetros são escolhidos de modo que o problema não perturbado se reduz a um oscilador harmônico forçado, e na escolha posterior o problema não perturbado é um oscilador linear amortecido e forçado. |