Dinâmica não linear de m Pêndula eletromecânico com excitação vertical

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Elias, Leandro José [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/94250
Resumo: Este trabalho apresenta um estudo de um pêndulo eletromecânico com excitação vertical utilizando a teoria de perturbações. O objetivo é fazer um estudo analítico para verificar os efeitos de ressonância no estado estacionário do sistema, efeitos esses provocados por alguns valores de freqüência do sistema dinˆamico. As equações do sistema dinâmico estudado apresentam características que impedem a obtenção de soluções analíticas devido à presença de termos não lineares, e ainda exibem interações ressonantes entre bloco, motor e pêndulo. A análise feita considerou o sistema com ressonância entre o bloco e o motor, mas foi descartada a interação ressonante com o pêndulo. Como a excitação no suporte é vertical, em primeira aproximação a equação do pêndulo é a equação de Mathieu. Devido à presença de um termo não linear nesta equação, foi feito também um estudo com a teoria de perturbações para obter uma solução analítica aproximada, tomando como exemplo a equação de Mathieu analisada no estudo desenvolvido por Nayfeh. As equações para o estado estacionário do sistema foram obtidas através da aplicação de um método de perturbação. O estudo dessas equações foi baseado no trabalho desenvolvido por Kononenko, e os resultados obtidos são análogos, pois o sistema dinâmico deste estudo e o sistema dinâmico considerado por Kononenko guardam certa semelhança.