Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
LACERDA, Estefane George Macedo de |
Orientador(a): |
LUDERMIR, Teresa Bernarda |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/1845
|
Resumo: |
Um dos principais obstáculos para o uso em larga escala das Redes Neurais é a dificuldade de definir valores para seus parâmetros ajustáveis. Este trabalho discute como as Redes Neurais de Funções Base Radial (ou simplesmente Redes RBF) podem ter seus parâmetros ajustáveis definidos por algoritmos genéticos (AGs). Para atingir este objetivo, primeiramente é apresentado uma visão abrangente dos problemas envolvidos e as diferentes abordagens utilizadas para otimizar geneticamente as Redes RBF. É também proposto um algoritmo genético para Redes RBF com codificação genética não redundante baseada em métodos de clusterização. Em seguida, este trabalho aborda o problema de encontrar os parâmetros ajustáveis de um algoritmo de aprendizagem via AGs. Este problema é também conhecido como o problema de seleção de modelos. Algumas técnicas de seleção de modelos (e.g., validação cruzada e bootstrap) são usadas como funções objetivo do AG. O AG é modificado para adaptar-se a este problema por meio de heurísticas tais como narvalha de Occam e growing entre outras. Algumas modificações exploram características do AG, como por exemplo, a abilidade para resolver problemas de otimização multiobjetiva e manipular funções objetivo com ruído. Experimentos usando um problema benchmark são realizados e os resultados alcançados, usando o AG proposto, são comparados com aqueles alcançados por outras abordagens. As técnicas propostas são genéricas e podem também ser aplicadas a um largo conjunto de algoritmos de aprendizagem |