[en] MARKOV CHAIN MONTE CARLO FOR NATURAL INFLOW ENERGY SCENARIOS SIMULATION
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36058&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36058&idi=2 http://doi.org/10.17771/PUCRio.acad.36058 |
Resumo: | [pt] Constituído por uma matriz eletro-energética predominantemente hídrica e território de proporções continentais, o Brasil apresenta características únicas, sendo possível realizar o aproveitamento dos fartos recursos hídricos presentes no território nacional. Aproximadamente 65 por cento da capacidade de geração de energia elétrica advém de recursos hidrelétricos enquanto 28 por cento de recursos termelétricos. Sabe-se que regimes hidrológicos de vazões naturais são de natureza estocástica e em função disso é preciso tratá-los para que se possa planejar a operação do sistema, sendo assim, o despacho hidrotérmico é de suma importância e caracterizado por sua dependência estocástica. A partir das vazões naturais é possível calcular a Energia Natural Afluente (ENA) que será utilizada diretamente no processo de simulação de séries sintéticas que, por sua vez, são utilizadas no processo de otimização, responsável pelo cálculo da política ótima visando minimizar os custos de operação do sistema. Os estudos referentes a simulação de cenários sintéticos de ENA vêm se desenvolvendo com novas propostas metodológicas ao longo dos anos. Tais desenvolvimentos muitas vezes pressupõem Gaussianidade dos dados, de forma que seja possível ajustar uma distribuição paramétrica nos mesmos. Percebeu-se que na maioria dos casos reais, no contexto do Setor Elétrico Brasileiro, os dados não podem ser tratados desta forma, uma vez que apresentam em sua densidade comportamentos de cauda relevantes e uma acentuada assimetria. É necessário para o planejamento da operação do Sistema Interligado Nacional (SIN) que a assimetria intrínseca a este comportamento seja passível de reprodução. Dessa forma, este trabalho propõe duas abordagens não paramétricas para simulação de cenários. A primeira refere-se ao processo de amostragem dos resíduos das séries de ENA, para tanto, utiliza-se a técnica Markov Chain Monte Carlo (MCMC) e o Kernel Density Estimation. A segunda metodologia proposta aplica o MCMC Interconfigurações diretamente nas séries de ENA para simulação de cenários sintéticos a partir de uma abordagem inovadora para transição entre as matrizes e períodos. Os resultados da implementação das metodologias, observados graficamente e a partir de testes estatísticos de aderência ao histórico de dados, apontam que as propostas conseguem reproduzir com uma maior acurácia as características assimétricas sem perder a capacidade de reproduzir estatísticas básicas. Destarte, pode-se afirmar que os modelos propostos são boas alternativas em relação ao modelo vigente utilizado pelo setor elétrico brasileiro. |