Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Holtz, Bruno Estanislau |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02042024-143434/
|
Resumo: |
Este trabalho considera o modelo de volatilidade estocástica na média, no qual a distribuição condicional dos dados pertence a família mistura de escala normal para modelagem de séries financeiras. Esta classe de modelos é mais robusta por acomodar erros com caudas mais pesadas que a distribuição normal, visto que esta é uma característica marcante de séries financeiras. Para a estimativa dos parâmetros, propomos um algoritmo Bayesiano via cadeias de Markov, utilizando o método Monte Carlo Hamiltoniano (HMC) e sua variante, o método Monte Carlo Hamiltoniano em Variedade Riemanniana (RMHMC). O algoritmo foi implementado utilizando as bibliotecas Rcpp e RcppArmadillo disponíveis na linguagem R. Os critérios de informação recentemente desenvolvidos, Watanabe Akaike Information Criterion (WAIC) e Leave-One-Out Cross-Validation (LOO-CV) foram calculados para comparar o ajuste dos modelos, bem como o Deviance Information Criterion (DIC). Estudos de simulação foram realizados para ilustrar e avaliar o desempenho do método proposto. Por fim, realizamos aplicações a dados reais, fornecendo evidências empíricas de sua efetividade. |