Zero-one law for (a,k)-regularized resolvent families and the Blackstock-Crighton-Westervelt equation on Banach spaces

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Gambera, Laura Rezzieri
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/192683
Resumo: This work presents some results of the theory of the (a,k)-regularized resolvent families, that are the main tool used in this thesis. Related with this families, one result proved in this work is the zero-one law, providing new insights on the structural properties of the theory of (a,k)-regularized resolvent families including strongly continuous semigroups, strongly continuous cosine families, integrated semigroups, among others. Moreover, an abstract nonlinear degenerate hyperbolic equation is considered, that includes the semilinear Blackstock-Crighton-Westervelt equation. By proposing a new approach based on strongly continuous semigroups and resolvent families of operators, it is proved an explicit representation of the strong and mild solutions for the linearized model by means of a kind of variation of parameters formula. In addition, under nonlocal initial conditions, a mild solution of the nonlinear equation is established.