Modelos híbridos para classificar imagens histológicas: uma associação de deep features por transferência de aprendizado com comitê de classificadores

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Oliveira, Cléber Ivo de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/214087
Resumo: O uso de modelos CNN explorando transferência de aprendizado profundo é uma estratégia que pode ser aplicada para definir atributos de alto nível e, consequentemente, permitir investigações de padrões em conjuntos reduzidos de imagens, situação comumente evidenciada no contexto de imagens médicas. A principal vantagem dessa estratégia está em projetar modelos que minimizam a ocorrência de overfitting, tornando-os mais úteis para a prática clínica. Portanto, neste trabalho, descrevemos uma proposta capaz de definir modelos híbridos para classificar imagens histológicas de tecido mamário, colorretal e hepático, por meio da associação de deep features via transferência de aprendizado, seleção por ranqueamento e classificação via comitê. Os atributos foram definidos a partir de camadas das arquiteturas AlexNet e ResNet-50. Os atributos foram organizadas em subconjuntos de características mais relevantes e avaliados por meio de validação cruzada k-fold. Os principais modelos híbridos foram definidos com deep features fornecidas pela rede ResNet-50, utilizando as camadas activation_48_relu e avg_pool. Os melhores resultados foram valores de acurácia de 98,00% e 99,32%, ao utilizar no máximo 35 deep features. O modelo foi capaz de reduzir o total de deep features em até 99,86% para obter os melhores valores de acurácia. Nossa proposta com informações detalhadas sobre os métodos, características e melhores associações são contribuições relevantes para a comunidade interessada no estudo de técnicas de machine learning para o reconhecimento de padrões.