Extração de features 3D para o reconhecimento de objetos em nuvem de pontos

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Sales, Daniel Oliva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07022018-091205/
Resumo: A detecção e reconhecimento de objetos é uma tarefa fundamental em aplicações relacionadas à navegação autônoma de robôs móveis e veículos inteligentes. Com a evolução tecnológica nos sistemas sensoriais, surgiram equipamentos capazes de detectar e representar os elementos presentes no ambiente de forma tridimensional, em estruturas chamadas nuvem de pontos. Os sensores 3D geralmente capturam um grande volume de pontos em curtos intervalos de tempo, o que demanda técnicas robustas para processamento dessa informação além de tolerância a eventuais ruídos nos dados. Uma abordagem frequentemente utilizada na área de Visão Computacional para redução de dimensionalidade é a extração de features robustas, armazenando um subconjunto de informações representativas e simplificadas do conjunto de dados. Esta tese apresenta uma metodologia de classificação de objetos em nuvens de pontos 3D através da extração de features 3D globais. Foi desenvolvido um novo descritor 3D invariante à escala, translação e rotação denominado 3D-CSD (3D-Contour Sample Distances) para representação da superfície dos objetos presentes no ambiente, e utilizado um método de aprendizado supervisionado para reconhecimento de padrões. Os experimentos realizados envolveram o uso de Redes Neurais Artificiais para o reconhecimento de diferentes classes de objetos, avaliando e validando a metodologia proposta. Os resultados obtidos demostraram a viabilidade da aplicação desta abordagem para o reconhecimento de objetos em sistemas de percepção 3D.