Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Ogawa, Lucas Seidy |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-17042024-073806/
|
Resumo: |
As álgebras de Hopf generalizam algumas classes bem abrangentes de álgebras como álgebras de grupo e álgebras envolventes universais de álgebras de Lie. Sendo assim, ao estudar as ações de álgebras de Hopf estamos generalizando o estudo de ações de grupos e de derivações de álgebras de Lie. Se H for uma álgebra de Hopf e V for um H-módulo, os invariantes são V^H = \\{ v \\in V : h \\cdot v = \\varepsilon(h)v \\ \\forall h \\in H\\}. Assim, no caso particular em que a álgebra de Hopf é a álgebra de grupo, os invariantes coincidem exatamente com os elementos fixos pela ação de todos os elementos do grupo. E no outro caso conhecido, das álgebras de Lie, os invariantes são os elementos que são anulados pelos elementos da álgebra de Lie, ou seja, são as constantes. Sendo assim, podemos estender a ação de H em R = T(V), de modo que R é uma H-módulo álgebra homogênea. Como essa ação é homogênea, os invariantes formarão uma subálgebra homogênea. Neste texto iremos estudar o comportamento dos invariantes desse tipo de ação. |