Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Bassetto, Edson Luis |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/180606
|
Resumo: |
Neste trabalho são desenvolvidos modelos de estimativa para fração difusa da radiação global (Kd) nas partições horárias e diária: o Modelo Estatístico (ME) clássico e com Técnicas de Aprendizado de Máquina (TAM). Estas técnicas são do tipo Redes Neurais Artificiais (RNA), Sistema Adaptativo de Inferência Neuro Fuzzy (ANFIS) e Máquina de Vetores de Suporte (SVM). O modelo ME utiliza como referência somente a transmissividade atmosférica (KT) e as TAM um conjunto de combinações de oito variáveis astronômicas, geográficas e meteorológicas. Na elaboração dos modelos ME e TAM foram utilizadas uma base de dados de sete anos (2000-2006) de medidas obtidas na Estação Meteorológica e de Radiometria Solar de Botucatu/SP. Para validação dos modelos ME e TAM foram elaboradas, a partir das medidas obtidas, duas bases anuais denominadas de Ano Típico (AT) e Ano Atípico (AAT). No Capítulo 1 foram desenvolvidos os modelos na partição horária com ME, com as RNA do tipo: Percepton Multicamadas (MLP), Função de Base Radial (RBF) e Regressão Generalizada (GRNN), e a ANFIS. No Capítulo 2 foram desenvolvidos os modelos na partição diária com o ME, a rede MLP, que apresentou os melhores resultados do Capítulo 1 e a SVM. Os indicadores estatísticos mostram que entre as TAM, o melhor desempenho nas partições horária e diária foi obtido com a técnica MLP, com desempenho (RMSE) superior ao modelo ME em aproximadamente 56% na partição horária e 20% na partição diária, nas duas bases de validação na estimativa de (Kd). Os resultados denotam que ao inserir as variáveis de forma progressiva no treinamento das técnicas, a precisão entre os valores estimados e medidos, asseguram um desempenho superior, comparados ao modelo ME o que torna as técnicas uma alternativa para estimativa da fração difusa (Kd) com as condições de treinamento e validação utilizadas neste estudo. |