Aplicando Aprendizado de Máquina para Estimativa de Esforço no Desenvolvimento de Software.

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: CORRÊA, Weldson Amaral lattes
Orientador(a): SANTOS, Davi Viana dos lattes
Banca de defesa: SANTOS, Davi Viana dos lattes, BRAZ JUNIOR, Geraldo lattes, RIVERO CABREJOS, Luis Jorge Enrique lattes, GRACIANO NETO, Valdemar Vicente lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/3289
Resumo: Estimates in software projects aim to help practitioners predict more realistic values on software development, impacting the quality of software process activities regarding planning and execution. However, software companies have difficulties when carrying out estimations that represent adequately the real effort needed to execute the software project activities. Although, the literature presents techniques to estimate effort, this activity remains complex. Recently, Machine Learning (ML) techniques are been applied to solve this problem. Through ML techniques it is possible to use databases of finished projects (datasets) to help get more precisely estimations. However, the estimations depends on the dataset they are applied. This research propose a methodolody based on automatic machine learning to generalize the estimations through many datasets. To evaluate our methodology, we conducted tests with ten datasets using four metrics: Mean Absolute Error, Median Magnitude Relative Error, Mean Magnitude Relative Error and Percentage Relative Error Deviation. The results show that the proposed methodology has consistent estimations for sofware effort based on the employed metrics, which indicates that our methodology is promising and can generalize the results to other datasets.