Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Zamora Ortega, Lisett Rocio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/192237
|
Resumo: |
No presente trabalho é descrito o estudo comparativo de métodos de estimativas da irradiação solar global (HG) diária através do modelo de Hargreaves-Samani (H-S) HG/HO = a ΔT0,5 e duas técnicas de Aprendizado de Máquina (AM), Máquinas de Vetores de Suporte (MVS) e Redes Neurais Artificiais (RNA). A base de dados utilizada foi obtida em 11 cidades do estado de São Paulo de diferentes classificações climáticas no período de 2013-2017. Por meio de regressão entre a transmissividade atmosférica (HG/HO) e raiz quadrada da diferença de temperatura (ΔT0,5). O modelo estatístico H-S foi calibrado e determinado para os valores da constante (a) e equações que permitem estimar HG com baixos coeficientes de determinação para duas condições:11 cidades individualmente e total. Os modelos de H–S foram validados por meio de correlações entre os valores estimados e medidos através dos indicadores de correlação (r) e rRMSE cujos valores indicaram que os modelos podem estimar HG com razoável precisão e exatidão. As técnicas computacionais, MVS e RNA, foram treinadas com 70% dos dados nas mesmas variáveis usadas no modelo de H-S, e posteriormente foram treinadas com entradas de mais 4 variáveis meteorológicas totalizando 5 combinações. Os treinos foram validados usando uma base de dados independente de 30% da base. Os indicativos estatísticos (r) das correlações mostraram que o modelo H-S pode estimar HG com baixos coeficientes de determinação. Os indicativos estatísticos rMBE, MBE, rRMSE, RMSE indicam que o modelo H-S pode ser utilizado na estimativa de HG com razoável exatidão e precisão. Os indicativos estatísticos obtidos pelos 5 combinações das técnicas MVS e RNA (diária) indicaram que os modelos podem ser utilizadas nas estimativas de HG com elevadas correlações, precisão e exatidão. A comparação dos indicativos estatísticos (r), rMBE, MBE, rRMSE, RMSE, entre o modelo de H-S e os modelos de redes MVS e RNA combinação 5, mostrou que: a técnica MVS possui melhor desempenho que a técnica RNA e o modelo estatístico H-S; e o modelo de RNA obteve melhores resultados que o modelo de H-S, nas estimativas de HG. |