Detalhes bibliográficos
Ano de defesa: |
2006 |
Autor(a) principal: |
Paula, Guilherme Marques de Faria |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-26052006-171214/
|
Resumo: |
Nesta dissertação é proposto e avaliado um modelo de caracterização da carga para utilização no planejamento operacional dos sistemas de distribuição baseado na caracterização dos consumidores através de curvas típicas de carga. A identificação dos padrões de curvas típicas baseou-se na aplicação da rede neural tipo mapa auto organizável, sobre a grande massa de dados de medições de clientes da campanha de medidas realizada pela distribuidora no processo de revisão tarifária o que permitiu a identificação dos padrões de consumo de energia ativa e fator de potência para os consumidores ao longo do dia. O módulo de agrupamento baseado no mapa auto organizável associado a técnica clássica de agrupamento das k-médias mostrou-se uma ferramenta extremamente robusta e eficaz na identificação de padrões para grandes bases de dados. A comparação dos resultados das estimativas de carga para cerca de 200 alimentadores de distribuição medidos através do sistema SCADA complementa e valida a aplicação desta metodologia, que culmina com a proposição de um modelo de otimização, que com base nas medições, possibilita melhorias significativas na estimativa de carga dos alimentadores estudados. A metodologia proposta neste trabalho demonstra ser uma ferramenta eficaz para que a distribuidora de energia elétrica possa constantemente realimentar os dados sobre os hábitos de consumo de seus clientes, garantindo assim a manutenção de estimativas consistentes para o planejamento operacional de seu sistema de distribuição. |