Previsão da suscetibilidade à incêndios e queimadas utilizando um modelo baseado em inteligência artificial e sistema de inferência fuzzy

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Duarte, Miqueias Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/217103
Resumo: Os incêndios florestais são eventos globais que causam perdas imensuráveis para o homem e para o meio ambiente. A previsão e mapeamento desses eventos pode ser uma importante medida, uma vez que possibilita desenvolver estratégias com vistas ao controle ou a prevenção. Nesse contexto, esta pesquisa teve por objetivo desenvolver uma metodologia para a previsão da Suscetibilidade à Incêndios e Queimadas (SIQ), a partir de dados de sensoriamento remoto, com uso de um método misto de aprendizagem de máquina, tendo como unidade de pesquisa a bacia hidrográfica do rio Sorocabuçu, no município de Ibiúna/São Paulo, Brasil. Foram utilizadas 14 variáveis potencialmente influenciadoras, sendo quatro fatores climáticos, dois antrópicos, quatro topográficos e quatro fatores relacionados às características da vegetação. Os fatores mais importantes foram selecionados com uso do algoritmo Boruta e, posteriormente, estes foram utilizados para compor um modelo de classificação com uso do Sistema de Inferência Fuzzy Híbrido (HFIS). O sistema foi implementado com base em dados de treinamento (70%) e avaliado com base em dados independentes (30%). Além disso, o sistema também foi implementado em dois períodos climáticos extremos (2020 e 2018). Os resultados obtidos mostraram que os fatores mais importantes estão relacionados às características da vegetação, seguido pelos fatores climáticos e antrópicos. A implementação do sistema HFIS mostrou que a função de associação fuzzy gaussiana com particionamento em cinco valores linguísticos apresentou os melhores ajustes. Considerando o conjunto de dados independentes, o modelo HFIS apresentou bom desempenho na predição para o ano de 2019 (Acurácia de 0,93 e índice Kappa de 0,86), apresentando um valor de AUC de 93,3%, o que representa boa capacidade de replicação do modelo proposto, uma vez que nos períodos climáticos considerados extremos, o modelo apresentou valores de AUC superiores a 90%. A aplicação do modelo HFIS mostrou que em 2019 cerca de 65,93% da área foi classificada com muito baixo e baixo SIQ, enquanto as áreas com maior SIQ foram minoritárias (16,18%) e, apesar disso, é neste último onde ocorrem cerca de 76,69% dos eventos de incêndios e queimadas. Estes resultados confirmam a eficiência do modelo proposto e sua capacidade em modelar problemas não lineares complexos. A implementação do sistema HFIS mostrou-se adequado para a previsão da SIQ, e os resultados obtidos podem ser utilizados para auxiliar os gestores públicos no seu planejamento, com vista à prevenção e mitigação dos eventos.