[en] A FUZZY MODEL FOR MULTITEMPORAL IMAGE CLASSIFICATION
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8953&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8953&idi=2 http://doi.org/10.17771/PUCRio.acad.8953 |
Resumo: | [pt] O presente trabalho apresenta a modelagem de conhecimento multitemporal para a classificação automática de cobertura do solo para imagens de satélite. O procedimento de classificação agrega os conhecimentos espectral e multitemporal utilizando conjuntos nebulosos e suas pertinências de classe como informação prévia. O método se baseia no conceito de Redes de Markov Nebulosas, um sistema com um conjunto de estados que a cada instante de tempo troca o estado corrente de acordo com possibilidades associadas a cada um. No caso deste trabalho cada estado representa uma classe, e as possibilidades são estimadas automaticamente a partir de dados históricos de uma mesma região geográfica, empregando algoritmos genéticos. A avaliação experimental utilizou um conjunto de imagens Landsat-5 da cidade do Rio de Janeiro, obtidas em cinco datas separadas por aproximadamente quatro anos. Os resultados indicaram que o uso do conhecimento multitemporal, conforme modelado pelo método proposto traz um significante aumento da eficiência de classificação em comparação à classificação puramente espectral, além de flexibilizar o procedimento de classificação no que diz respeito aos dados necessários para o treinamento do modelo. |