Sistema de inferência fuzzy geral do tipo-2 aplicado à classificação
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/122 |
Resumo: | Propõe-se, nesta tese, o desenvolvimento de uma nova ferramenta baseada em conjuntos fuzzy gerais do tipo-2 para aplicação em processos de classificação digital de dados. O problema de classificação a ser considerado está relacionado à identificação de regiões de floresta em imagens de satélite com o objetivo de auxiliar em tarefas de monitoramento florestal. O classificador digital desenvolvido utiliza um mecanismo de inferência denominado de "inferência escalonada fuzzy geral do tipo-2" para classificar os pixels das imagens de satélite de acordo com sua cobertura vegetal. Tal classificador é inovador pois, além de utilizar conjuntos fuzzy tipo-2 gerais, pode utilizar tanto uma base de regras específica quanto uma base genérica (ambas de forma hierárquica) para reclassificar pontos que, do contrário, permaneceriam sem classificação. Isto permite a obtenção de uma base de regras compacta (composta de poucas regras). A justificativa para o uso de sistemas de inferência do tipo-2 é que estes, apesar do custo computacional maior, apresentam desempenho superior aos sistemas do tipo-1 equivalentes. Os testes realizados mostram que, de fato, o sistema proposto é melhor do que o classificador fuzzy convencional usualmente empregado em aplicações semelhantes e possui desempenho comparável ao classificador estatístico da máxima verossimilhança, sendo uma alternativa viável ao último. |