Some persistent cohomology invariants and an axiomatic version of persistent homology

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Contessoto, Marco Antônio de Freitas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/216000
Resumo: Neste trabalho encontramos dois grandes capítulos que têm como foco duas das mais importantes ferramentas da Análise Topológica de Dados (TDA): homologia de persistência e cohomologia de persistência. As abordagens dadas a essas duas ferramentas são de natureza e objetivos muito distintos. Com inúmeras aplicações nas mais variadas áreas, a homologia de persistência já se mostrou uma ferramenta muito poderosa, porém pouco se estudou a respeito de uma abordagem axiomática sobre a mesma. Definimos adaptações persistentes dos axiomas de Eilenberg-Steenrod, com os quais podemos desenvolver e construir as propriedades da mesma. Para concluir, provamos um teorema de unicidade, mostrando a total caracterização de nossa teoria por meio desses axiomas. Considerando a ferramenta dual da anterior, temos a cohomologia de persistência. Muito estudada em artigos recentes, a cohomologia vem como uma forma alternativa, mais rápida e de mesma eficiência que a homologia de persistência, já que devido às dualidades temos construções semelhantes. Porém, pouquíssima abordada nesses trabalhos, a estrutura de anel que se ganha ao trabalhar com cohomologia não teve desenvolvimento relevante em TDA. Nesse trabalho, definiremos dois invariantes totalmente relacionados a essa estrutura de anel, que surge através dos produtos cup. Calcularemos vários exemplos desses invariantes, mostrando situações em que eles são capazes de nos dar informações mais completas que as antigas ferramentas.