Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Facini, Linara Stéfani |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/214939
|
Resumo: |
Neste trabalho apresentamos os conceitos básicos da Teoria Algébrica dos Números com o objetivo da construção de reticulados por intermédio dos corpos de números de grau n = 2, 3, 4, 5, 6. Neste contexto, apresentamos os corpos de números construídos através dos polinômios irredutíveis p(x) = x n + ax + b, com a e b inteiros não nulos e p(x) = x n − d, com d inteiro livre de quadrados. Além disso, apresentamos o anel de inteiros algébricos e o discriminante desses corpos e através do homomorfismo de Minkowski construímos reticulados algébricos a partir da aplicação via o anel de inteiros desses corpos. |