Recomendação de fertilizantes para violeta africana de acordo com o requerimento e suprimento nutricional
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química, Mestrado em Solos e Nutrição de Plantas UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/5499 |
Resumo: | A adubação é o maior gargalo para a produção de violetas, visto que não há recomendações específicas para as mesmas. Assim, foi desenvolvido um método para recomendação de adubação baseado na demanda e requerimento da planta e suprimento do substrato. No método do suprimento nutricional os princípios gerais das leis de adubação são satisfeitos. Os objetivos deste trabalho foram: determinar a demanda e a taxa de recuperação de macro e micronutrientes pela violeta africana; estimar as taxas de recuperação de macro e micronutrientes pelos extratores de formas disponíveis e determinar a dose que supra os requerimentos de violeta africana durante todo o ciclo. O experimento foi conduzido em casa de vegetação, na UFV. O arranjo experimental utilizado foi um fatorial (2×6×4)+1, duas variedades de violeta, Kalisa e Fiesta, cultivadas com seis doses (0, 20, 40, 60, 120 e 200 mg/dm3/aplicação) de adubo fluido, sendo cada aplicação de 100 mL a cada 7 d por unidade experimental (composta por um prato com 3 vasos de 0,4 dm³ de substrato e uma planta cada), e 4 épocas de colheita (35, 70, 105 e 140 d após o início da aplicação das doses de adubo), totalizando 48 tratamentos, mais o tempo zero correspondente a amostragem feita nas mudas no dia em que chegaram ao departamento. Em cada colheita foi coletada também uma amostra do substrato de cada unidade experimental, para análise química. A parte vegetal (folha, meristema e inflorescência) foi seca em estufa de circulação forçada a 70 °C, pesada, moída e calcinada (0,1 g) em mufla a 475 °C. Posteriormente foi adicionado 10 mL de HCl 0,1 mol/L e o extrato foi filtrado, acrescentando 10 mL de água deionizada (volume final 20 mL). Em seguida os teores de S, Ca, Mg, B, Mo, Zn, Fe, Mn e Cu, foram analisados por espectrofotômetria de emissão ótica em plasma induzido (ICP-OES), de P por colorimetria, de K por fotômetria de chama e de N pelo método Kjeldahl (Jackson, 1979; Bremner, 1979). A partir do teor do nutriente i (tNui) e da produção de matéria seca de cada órgão vegetal (mMSO) da planta, foi obtido o conteúdo do nutriente por órgão vegetal (cNuov = tNui×mMSO) e, pelo somatório, o conteúdo total do nutriente na planta (cNuit = cNu Inflorescência + cNu Folha + cNu Meristema). O requerimento do nutriente pela planta é obtido pela divisão da demanda nutricional pela taxa de recuperação do nutriente pela planta. A taxa de recuperação pelo extrator foi calculada de duas formas, com o objetivo de estimar a quantidade real de nutrientes presentes no substrato, já que os extratores não são capazes de extrair 100 % dos nutrientes disponibilizados, para isso foi dividido as quantidades encontradas no substrato por cada uma das taxas de recuperação do extrator calculadas. Já a taxa de recuperação pela planta foi calculada por sete equações diferentes, onde o numerador era sempre [100 (d̂ Nuij d̂ Nui0) ]; em que dNuij= Demanda do nutriente i pelas plantas fertilizadas com a dose j, em mg/pl e dNui0= Demanda nutriente i absorvido pelas plantas na dose 0, em mg/pl; e os denominadores foram: qNuiDj = Quantidade do nutriente i disponibilizado pela aplicação da dose j, em mg/vaso ; q̂ NuiDjS = Quantidade do nutriente i disponibilizado pela aplicação da dose j, e pela quantidade do nutriente i disponibilizado pelo substrato, em mg/vaso. q̂ NuiSij = Quantidade do nutriente i disponibilizado pelo substrato na dose j, em mg/vaso. q̂ NuiSc = Quantidades do nutriente i disponibilizado pelo substrato, corrigidas pela taxa de recuperação pelo extrator do nutriente i na dose j, em mg/vaso . q̂ NuiDjSc,= Quantidade do nutriente i disponibilizado pela aplicação da dose j, em mg/vaso e pela quantidade disponibilizada pelo substrato, por vaso, corrigidas pela taxa de recuperação pelo extrator do nutriente i na dose j, em mg/vaso. q̂ NuiSm, = Quantidade do nutriente i disponibilizado pelo substrato corrigido pela taxa de recuperação média pelo extrator do nutriente i na dose j, em mg/vaso . q̂ NuiDjSm = Quantidade do nutriente i disponibilizado pela aplicação da dose j, em mg/vaso, e pela quantidade do nutriente i disponibilizado pelo substrato corrigido pela taxa de recuperação média pelo extrator do nutriente i na dose j. A equação que representa melhor as taxas de recuperação pela planta é aquela cujo denominador é: q̂ NuiDjSm , devido aos valores intemediários de taxas de recuperação que apresenta, o que gera um requerimento que supre as necessidades da planta e é economicamente viável. As maiores taxas de recuperação pelo extrator foram para K; A variedade Fiesta apresentou maior conteúdo de macro e micronutrientes, em relação a variedade Kaliza exceto para Fe; As duas variedades não apresentaram diferenças significativas em relação ao acúmulo de massa de matéria seca; As maiores taxas de recuperação pela planta foram para K, N e Mo; A dose 120 mg/dm³/aplicação proporcionou maior acúmulo de matéria seca, com altas taxas de recuperação, sendo a dose recomendada para ambas variedades. |