Formation and characterization of nanostructured conjugates from tara gum and α-lactalbumin or β-lactoglobulin

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Hernández Hernández, Héctor Luis
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/22084
Resumo: The conjugation of proteins with polysaccharides has been used to improve and/or enhance the technical-functional properties of proteins, to increase the thermal stability of proteins and to form nanostructures able to act as carrier of bioactive compounds. Due to the differentiated functionality of conjugates, Chapter I presents a review on the techniques used to produce and to characterize proteins/polysaccharides conjugates formed via Maillard reaction. Articles 2 and 3 describe the formation and characterization of, respectively, α-lactalbumin (α-la) and β-lactoglobulin (β-lg) conjugates with Tara gum (TG), as well as the obtaining and characterization of nanostructures formed from these conjugates. The conjugates were obtained through Maillard reaction using the dry-heating method. Dispersions containing protein and polysaccharide (mass ratio 1:1) were initially lyophilized and/or spray-dried in order to evaluate the effect of the drying technique, and subsequently heated to 60 ° C and relative humidity of 79 % for up to 9 days. The formation of the conjugates was evaluated by measures of the browning index and by using the ortho-phthalaldehyde test. Variance analysis and Tukey test were used as criteria to determine the most appropriate incubation time for obtaining the conjugates. Nanostructures from conjugates were synthesized under different physicochemical conditions (temperature, pH and heating time) and characterized by dynamic light scattering, zeta (ζ-) potential, fluorimetry and circular dichroism. The thermal stability parameters (denaturation temperature, T d ; change of enthalpy, ΔH) were determined by differential scanning calorimetry, as well as the technical-functional properties (foam ability and emulsion stability index) of pure proteins, mixtures of protein+TG and nanostructures. The morphology of the nanostructures was evaluated by transmission electron microscopy and atomic force microscopy. The progress of the Maillard reaction increased with the increment of the heating time, with a larger extension in the systems formed with lyophilized mixtures. The most appropriate time of glycosylation for the two studied systems was 2 days. Nanostructures from β-lg-TG conjugates presented electrostatic instability with ζ-potential values varying from -30 to 30 mV. Systems containing β-lg-TG, formed at process condition of 50 °C, pH 9.2, 45’ and dried by spray (SD) showed excellent emulsifying stability. Nanostructures from α-la-TG conjugates showed a conical shape with a mean hydrodynamic diameter ranging from 34.3 to 290.1 nm, depending on the system and the conditions used. Systems of α-la-TG (SD) formed at conditions of 50 °C, pH 9.2, 45’ showed T d = 67.50 °C indicating better thermal stability when compared to the control (pure α-la; T d = 63.56 °C). Changes were observed in the secondary structure of nanostructures formed from α-la-GT system, mainly a decrease in α-helix content.