Metodologias alternativas aos gráficos de controle na caracterização de processos univariados

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Gonçalves, Thiago da Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
BR
Estatística Aplicada e Biometria
Mestrado em Estatística Aplicada e Biometria
UFV
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://locus.ufv.br/handle/123456789/4019
Resumo: As empresas têm investido cada vez mais na qualidade, no sentido de buscar maior sobrevivência no mercado, ganhar mais clientes satisfeitos e aumentar a produtividade e a lucratividade. Para buscá-la com mais êxito com auxilio do controle estatístico, faz-se uso dos gráficos de controle que monitoram o processo e sinalizam se há necessidade de corrigi-lo, de maneira que o produto final possa estar dentro dos padrões exigidos pelos consumidores. Na entanto, metodologias alternativas aos gráficos de controle, também podem ser utilizadas para classificar ou discriminar se o processo está ou não sob controle. Neste trabalho foram aplicadas as seguinte: análise discriminante, regressão logística e redes neurais artificiais. Para aplicar cada um dos métodos propostos utilizaram-se dados simulados, onde as medidas de comparação entre eles foram baseadas nas incidências dos alarmes falsos e verdadeiros sobre a classificação desses valores em dentro ou fora de controle estatístico. Foram simulados valores normais e independentemente distribuído sob controle estatístico. Posteriormente, foram impostas variações para que ao final do conjunto de dados saíssem de controle ou que apresentassem autocorrelações. As redes neurais artificiais e regressão logística se mostraram capazes de substituírem os melhores tipos de gráficos de controle, em sinalizarem pontos fora de controle situados ao meio ou ao final do conjunto de dados, sob diferentes distâncias da média de controle e distribuído de forma independente ou não.