Comparação dos algoritmos máquina de aprendizagem extrema e retropropagação do erro para estimação de altura e volume de árvores

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Pelli, Eduardo
Orientador(a): Nogueira, Gilciano Saraiva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UFVJM
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Link de acesso: http://acervo.ufvjm.edu.br:8080/jspui/handle/1/346
Resumo: O uso do algoritmo de aprendizado para as redes neurais artificiais (RNA) do tipo feed- forward, nomeado máquina de aprendizagem extrema (Extreme Learning Machine - ELM), permite que o treinamento possa ser realizado com melhor desempenho do que com o uso dos métodos de aprendizagem tradicionais, baseados em gradiente descendente, tanto em termos de generalização como na velocidade de aprendizagem. Neste estudo objetivou-se a aplicação das redes neurais artificiais utilizando o algoritmo ELM em problemas de estimativa da altura árvores de Pinus, e também, em problema de estimativa do volume de madeira dos componentes, fuste e galhos, de árvores do Cerrado, de maneira consistente. Na estimativa da altura de árvores de Pinus as redes neurais artificiais apresentaram bons resultados em comparação com métodos estatísticos já utilizados para este fim. Como já era esperado, a máquina de aprendizagem extrema se mostrou mais eficiente, do ponto de vista do custo computacional, no treinamento das RNAs em relação ao algoritmo back-propagation, mantendo a eficácia do método. Na aplicação das RNAs ao problema de estimativa do volume dos componentes de árvores do Cerrado foi possível verificar que as redes neurais artificiais podem estimar o volume dos componentes (fuste e galhos) destas árvores. Não foi possível identificar qual é o melhor método para se estimar o volume de fuste e de galhos de árvores do Cerrado de maneira consistente, tendo em vista que, as RNAs presentaram resultados semelhantes aos modelos de regressão estudados.