Visualização e classificação de características para a discriminação entre indivíduos com a doença de Parkinson submetidos a tratamento com Levodopa e estimulação profunda do cérebro

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Machado, Alessandro Ribeiro de Pádua
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/18291
http://dx.doi.org/10.14393/ufu.te.2017.49
Resumo: Over the years, a number of distinct treatments have been adopted for the management of the motor symptoms of Parkinson’s disease (PD), including pharmacologic therapies and deep brain stimulation (DBS). Efficacy is most often evaluated by subjective assessments which are prone to error and dependent on the experience of the examiner. Our goal was to identify an objective means of assessing response to therapy. In this study, we employed objective analyses in order to visualize and identify differences between three groups: healthy control (N=10), subjects with PD treated with DBS (N=12), and subjects with PD treated with levodopa (N=16). Subjects were assessed during execution of three dynamic tasks (finger taps, finger to nose, supination and pronation) and a static task (rest, i.e., extended arm with no active movement). Measurements were acquired with two pairs of inertial and electromyographic sensors. Feature extraction was applied to estimate the relevant information from the data after which high-dimensional feature space was reduced to a two-dimensional space by using the nonlinear Sammon’s map. The statistical method Non-Parametric Analysis of Variance was employed for the verification of relevant statistical differences among the groups (p < 0.05). In addition, K-fold cross-validation for discriminant analysis based on Gaussian Finite Mixture Modeling was employed for data classification. The results showed visual and statistical differences for all groups and conditions (i.e., static and dynamic tasks). The employed methods were successful for the discrimination of the groups. Classification accuracy was 81%±6% (mean ± standard deviation) and 71%±8%, for classification and test groups respectively. This research showed the discrimination between healthy and diseased groups conditions. The methods were also able to discriminate individuals with PD treated with DBS and levodopa. These methods enable objective characterization and visualization of features extracted from inertial and electromyographic sensors for different groups.