Algoritmos genéticos aplicados na escolha da taxa de amostragem em identificação de sistemas
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
BR Programa de Pós-graduação em Engenharia Elétrica Engenharias UFU |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/14628 http://doi.org/10.14393/ufu.di.2016.271 |
Resumo: | The present work has as the main goal to introduce a new method to select the sample time of input and output signals used in the identification process using NARMAX representation. To achieve this goal is proposed a genetic algorithm wich uses a supersampled signal, i.e., a signal sampled in the most high frequency available, and later decimation rates are used to create different individuals from the high frequency sample signal. The individuals evaluation uses a system identification with NARMAX representation. The evaluation of the proposed method used a genetic algorithm developed in the software Matlab®. The proposed method was applied in the process identification of a polimeric membrane fuel cell temperature model and the results are presented. |