Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Binkowski, Cassio
Orientador(a): Mejía, Rodrigo Iván Goytia
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Vale do Rio dos Sinos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.repositorio.jesuita.org.br/handle/UNISINOS/5997
Resumo: A identificação de sistemas está longe de ser uma tarefa nova. Sendo inicialmente proposta na metade do século XX, foi extensamente desenvolvida para sistemas lineares, devido às exigências da época relacionadas à complexidade dos sistemas e também do poder computacional, atingindo excelente resultados. No entanto, com o aumento da complexidade dos sistemas e das exigências de controle, os modelos lineares não mais conseguiam representar os sistemas em toda a faixa de operação exigida, sendo assim requerendo uma aplicação dos modelos não-lineares. Visto que todos os sistemas presentes na natureza possuem certo grau de não linearidade, é correto afirmar que um modelo não-linear é capaz de representar as dinâmicas dos sistemas de forma mais compreensiva que um modelo linear. A identificação de sistemas não lineares foi então estudada e diversos modelos foram propostos, atingindo ótimos resultados. Nesse trabalho foi realizado um estudo de dois modelos não-lineares, NARMAX e Hammerstein-Wiener, aplicando esses modelos a dois processos simulados. Foram então derivados dois algoritmos para realizar a estimação dos parâmetros dos modelos NARMAX e Hammerstein-Wiener, utilizando um estimador ortogonal, e também um algoritmo para geração de sinais de entrada multinível. Os modelos foram então estimados para os sistemas simulados, e comparados utilizando os critérios AIC, FPE, Lipschitz e de correlação cruzada de alta ordem. Os melhores resultados foram obtidos com os modelos Hammerstein-Wiener-OLS e NARMAX-OLS, ao contrário do modelo NARMAX-RLS. No entanto, devido a resultados bastante divergentes entre os modelos, pode-se concluir que essa área ainda carece de desenvolvimento de técnicas precisas para comparação e avaliação de modelos, bem como quanto à quantificação do nível de não-linearidade do sistema em questão.